Hubness and Pollution: Delving into Cross-Space Mapping for Zero-Shot Learning

نویسندگان

  • Angeliki Lazaridou
  • Georgiana Dinu
  • Marco Baroni
چکیده

Zero-shot methods in language, vision and other domains rely on a cross-space mapping function that projects vectors from the relevant feature space (e.g., visualfeature-based image representations) to a large semantic word space (induced in an unsupervised way from corpus data), where the entities of interest (e.g., objects images depict) are labeled with the words associated to the nearest neighbours of the mapped vectors. Zero-shot cross-space mapping methods hold great promise as a way to scale up annotation tasks well beyond the labels in the training data (e.g., recognizing objects that were never seen in training). However, the current performance of cross-space mapping functions is still quite low, so that the strategy is not yet usable in practical applications. In this paper, we explore some general properties, both theoretical and empirical, of the cross-space mapping function, and we build on them to propose better methods to estimate it. In this way, we attain large improvements over the state of the art, both in cross-linguistic (word translation) and cross-modal (image labeling) zero-shot experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ridge Regression, Hubness, and Zero-Shot Learning

This paper discusses the effect of hubness in zero-shot learning, when ridge regression is used to find a mapping between the example space to the label space. Contrary to the existing approach, which attempts to find a mapping from the example space to the label space, we show that mapping labels into the example space is desirable to suppress the emergence of hubs in the subsequent nearest ne...

متن کامل

Improving zero-shot learning by mitigating the hubness problem

The zero-shot paradigm exploits vector-based word representations extracted from text corpora with unsupervised methods to learn general mapping functions from other feature spaces onto word space, where the words associated to the nearest neighbours of the mapped vectors are used as their linguistic labels. We show that the neighbourhoods of the mapped elements are strongly polluted by hubs, v...

متن کامل

Zero-Shot Learning on Semantic Class Prototype Graph.

Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Ex...

متن کامل

Joint Dictionaries for Zero-Shot Learning

A classic approach toward zero-shot learning (ZSL) is to map the input domain to a set of semantically meaningful attributes that could be used later on to classify unseen classes of data (e.g. visual data). In this paper, we propose to learn a visual feature dictionary that has semantically meaningful atoms. Such dictionary is learned via joint dictionary learning for the visual domain and the...

متن کامل

Zero-Shot Learning by Convex Combination of Semantic Embeddings

Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015